Tuesday, March 20, 2018

Micro Fusion In Nanowires Array

This is a rather astounding result. The authors have managed to cause deuterons-deuterons fusion in an array of nanowires via igniting it using only joule-level pulsed laser[1], i.e. not using the huge, gigantic lasers such as that as the National Ignition Facility.

This is an open-access paper and you can get the full version at this link.

And no, before you jump all over this one and think that this is the next fusion power generator, you need to think again. The authors are touting this as a viable (and cheaper) ultra-fast pulsed neutron source, which can be useful in many applications and studies.


[1] A. Curtis et al., Nature Communnications DOI: 10.1038/s41467-018-03445-

Thursday, March 15, 2018

SQUID: History and Applications

No, this is not the squid that you eat. It is the Superconducting Quantum Interference Device, which is really a very clear application of quantum mechanics via the use of superconductors.

This is a lecture presented by UC-Berkeley's John Clarke at the 2018 APS March Meeting.


Wednesday, March 14, 2018

Stephen Hawking: 1942–2018

Of course, the biggest physics news of the day is the passing of Stephen Hawking at the age of 76.

Unfortunately, as popular as he is in the public arena, it also means that he left us without being awarded the highest prize in physics, which is the Nobel prize. This isn't unusual, especially for a theorist, because there are many theorists whose contribution became of utmost importance only many years later after they are gone.

Still, as a scientist who had attained a highly-unusual superstar status among the public, I will not be surprised if he has had a lasting impact of the field, and the perception of the field among the public and aspiring physicists.

RIP, Stephen.


Tuesday, March 13, 2018

Twin Paradox - The "Real" Explanation

So this thing doesn't seem to go away. The Twin Paradox is a common question that gets asked in class and online. And of course, the most common answer being given to explain away the paradox is that there is a broken symmetry between the two twins, and thus, they should not experience the same thing. But often, this involves one twin experiencing an acceleration/deceleration, which the other twin did not experience.

However, in this video, Don Lincoln tries to correct the explanation and argues that even without any acceleration/deceleration, one twin will STILL not have the same set of experience (he/she is in two different reference frame, while the "non-moving" twin stays in just one reference frame) when compared to the other twin, and thus, this broken symmetry resolves the twin paradox.

The math is simple algebra, but you do have to keep the notation straight, and the signs.


Teaching Intro Physics To Life Science Students

Teaching intro General Physics to Life Science/Bio students is something I do regularly. And it can be quite challenging because, in my case, calculus is not required and isn't used in the lesson. So there are many things that can't be easily derived from scratch.

I've resolved, a long time ago, that the approach to teaching such a class has to be different than the approach to teaching the calculus-based class, which is often populated by physics, chemistry, and engineering majors. In my experience, the average math skill is lower in the non-calc-based general physics class, which isn't too surprising. But more challenging than that, there is less of an interest and inclination towards the physics subject from such students. Most, if not all, of the Life Science/Bio students are in the class because they have to, and some even have an active dislike of the subject matter.

So it is definitely a challenge to not only convey the material in an understandable manner, but also to perk up their interest in the material so that they will do well in the course. It is why I tend to read papers like this one, which studied the correlation between life science students' interest, attitudes, and performance in a general physics class.[1] In particular, I'm always interested in using examples from biology/medicine to illustrate the particular physics topics that we cover in a lecture. As concluded in this paper, tailoring the subject matter to overlap with what the students are majoring in can affect not only the interest in the subject, but also their performance. This is a no-brainer for many of us, but this paper clearly shows the correlation.

BTW, it helps if the text being used is also geared towards the life science students.  The one that I had used before is "College Physics" by Giambattista, Richardson, and Richardson. I like the part where at the beginning of each chapter, it lists out some of the relevant applications in biology, medicine, etc. I just wish that the text has more examples from such areas, and more homework exercises in those areas, the way the paper described the examples and problems that were used in the course.


[1] C.H. Crouch et al. Phys. Rev. Phys. Educ. v.14, 010111 (2018).

Friday, March 09, 2018

Fusion Power Is 15 Years Away?

This news article is reporting that "MIT scientists" is predicting that we will have nuclear fusion power in 15 years time.

The project, a collaboration between scientists at MIT and a private company, will take a radically different approach to other efforts to transform fusion from an expensive science experiment into a viable commercial energy source. The team intend to use a new class of high-temperature superconductors they predict will allow them to create the world’s first fusion reactor that produces more energy than needs to be put in to get the fusion reaction going.

Bob Mumgaard, CEO of the private company Commonwealth Fusion Systems, which has attracted $50 million in support of this effort from the Italian energy company Eni, said: “The aspiration is to have a working power plant in time to combat climate change. We think we have the science, speed and scale to put carbon-free fusion power on the grid in 15 years.”

Interestingly, there was no direct quote from any MIT scientists here who is working on the project. The article quoted MIT's vice-president for research, but she's not working on this project.

So essentially, it appears that no one from MIT is making this claim, but everyone else on the peripheral is.

Let's mark this and check back in 15 years. Still, I will not be holding my breath.


Wednesday, March 07, 2018

Seeing Anyons With STM?

This is a very intriguing theoretical paper that proposes the detection of anyon using STM (you get free access to the actual paper from the website). The detection involves the measurement of the local density of states (LDOS), and then counting the resonance "rings". This is shown in Fig. 1 and 2 of the paper.[1]

This is quite a fascinating idea, because to get these fractional effects, one has to have a 2D confinement of the charges involved.

Now it becomes a race in seeing who might be able to produce such an experiment to detect these rings. STMs are pretty common, but it is now a matter of having the suitable material to see this.


[1] Z. Papic et. al. PRX v.8, 011037 (2018).

Tuesday, March 06, 2018

Magnon Transistors

A number of papers appear almost simultaneously on the invention of "magnon transistors". Instead of a transistor that directs the direction of electronic current flow, these are transistor that direct magnetic spin current flow, i.e. magnon flow.

Magnonic devices run exclusively on spin currents. (Spintronic devices, another electronics alternative, include both charge and spin currents.) To picture a magnon, imagine a row of spins pointing up, representing a magnetic material, and then imagine briefly flipping the spin at one end. This motion leads to a propagating wave that moves through the material as each spin influences its neighbor. Magnons can travel quickly and efficiently over long distances—up to about a centimeter in the best materials—without significantly losing energy or heating up the material, a feat not possible for electrons. But before building fast and efficient magnonic circuits, researchers need components that can regulate magnon currents.

I know I have been repeating this over and over again, but this is another example where basic research in condensed matter/solid state physics is now finding application in modern electronics.


Thursday, March 01, 2018

Thermal Footprints of Early Stars

Imagine being able to detect signals coming from the first stars formed in our universe, almost 180 million years after the Big Bang. This is why this astounding feat has been receiving popular media coverage.

A new paper published in Nature this week reports on the measurements of thermal radiation from such events.

A long-standing theory that still awaits testing predicts that absorption of UV radiation from early stars by nearby clouds of hydrogen could have driven TS back down to TG, but not lower. In other words, the cosmic dawn would make the gas seem colder when observed at radio frequencies. This would create an absorption feature in the spectrum of the background radiation left over from the Big Bang.

Bowman et al. now report the possible detection of just such an absorption signal. The authors measured TS , averaged over much of the sky and over a contiguous range of radio frequencies; each frequency provides a window on a different time in the Universe’s past. The measurement is very difficult because it must be performed using an extremely well-calibrated VHF radio antenna and receiver, to enable the weak cosmological signal to be separated from much stronger celestial signals and from those within the electronics systems of the apparatus used. 

For those of you who are not familiar with science, when you read the link, please read how the experimenters made the effort to ensure that their results are not due to their experimental technique or instrumentation.


Wednesday, February 28, 2018

MinutePhysics Special Relativity Chapter 2

If you missed Chapter 1, check it out here.

Here's Chapter 2.


Tuesday, February 27, 2018

How People Got Time Dilation Wrong

While we are still waiting for Minute Physics to continue with its Special Relativity series, Fermilab's Don Lincoln has a nice video on the things that many people got wrong with SR's time dilation concepts. I see these misconception often, so this might be quite beneficial to those who do not have a formal lesson in SR. Heck, I think even physics students might benefit watching this.


Monday, February 26, 2018

Lawrence Krauss Hit By Sexual Misconduct Allegations

Oh dear. I knew it was going to happen that someone from within the physics community will be hit by such allegations (hey, we are all still human after all and not immune to doing such nasty actions). But it is still a bit surprising and disappointing when such allegations happens to someone whose writings I've enjoyed over the years.

I'm sure this will work through the legal system, and I'm not going to comment anymore than that. I think most, if not, all of us here in the US who work either in the academic settings or at a govt. lab had gone through training or classes on sexual harassment. In my case, I've had gone through several of these, including training on Title IX, etc.. etc.

This is an issue we all have to face, and we are now starting to see how pervasive it really is.


Saturday, February 24, 2018

New Measurement of Hubble Constant Brings New Puzzle

The most extensive measurement of the Hubble constant based on observations made by the Hubble telescope (how appropriate) has revealed a discrepancy between its value and those made earlier by ESA's Planck satellite.

Planck’s result predicted that the Hubble constant value should now be 67 kilometers per second per megaparsec (3.3 million light-years), and could be no higher than 69 kilometers per second per megaparsec. This means that for every 3.3 million light-years farther away a galaxy is from us, it is moving 67 kilometers per second faster. But Riess’s team measured a value of 73 kilometers per second per megaparsec, indicating galaxies are moving at a faster rate than implied by observations of the early universe.

The Hubble data are so precise that astronomers cannot dismiss the gap between the two results as errors in any single measurement or method. “Both results have been tested multiple ways, so barring a series of unrelated mistakes,” Riess explained, “it is increasingly likely that this is not a bug but a feature of the universe.”

The arXiv version of the paper can be found here.


Wednesday, February 21, 2018

The Dark Life Of The Higgs Boson

I decided to modify a bit the title of the Symmetry article that I'm linking to, because in that article, the possible link between the Higgs boson and dark matter is made. This allows for the study of the decay of the Higgs to be used to detect the presence of dark matter.

The Standard Model not only predicts all the different possible decays of Higgs bosons, but how favorable each decay is. For instance, it predicts that about 60 percent of Higgs bosons will transform into a pair of bottom quarks, whereas only 0.2 percent will transform into a pair of photons. If the experimental results show Higgs bosons decaying into certain particles more or less often than predicted, it could mean that a few Higgs bosons are sneaking off and transforming into dark matter.

Of course, these kinds of precision measurements cannot tell scientists if the Higgs is evolving into dark matter as part of its decay path—only that it is behaving strangely. To catch the Higgs in the act, scientists need irrefutable evidence of the Higgs schmoozing with dark matter.

So there you have it.

If you are not up to speed on the discovery of the Higgs (i.e. you've been living under a rock for the past few years), I've mentioned a link to a nice update here.


Friday, February 16, 2018

Observation of 3-Photon Bound States

They seem to be making a steady and impressive success along this line.

A new paper in Science[1] has shown an impressive result of the possibility of causing 3 different photons to be "bound" or entangled with one another after traversing through a cold rubidium atom gas.

In controlled experiments, the researchers found that when they shone a very weak laser beam through a dense cloud of ultracold rubidium atoms, rather than exiting the cloud as single, randomly spaced photons, the photons bound together in pairs or triplets, suggesting some kind of interaction — in this case, attraction — taking place among them.

Now, without going overboard with the superlatives, it must be stressed that this does not occur in vacuum, i.e. 3 photons just don't say hi to one another and decide to hang out together. The presence of the cold rubidium gas is essential for a photon to bound with one of the atoms to form a polariton:

The researchers then developed a hypothesis to explain what might have caused the photons to interact in the first place. Their model, based on physical principles, puts forth the following scenario: As a single photon moves through the cloud of rubidium atoms, it briefly lands on a nearby atom before skipping to another atom, like a bee flitting between flowers, until it reaches the other end.

If another photon is simultaneously traveling through the cloud, it can also spend some time on a rubidium atom, forming a polariton — a hybrid that is part photon, part atom. Then two polaritons can interact with each other via their atomic component. At the edge of the cloud, the atoms remain where they are, while the photons exit, still bound together. The researchers found that this same phenomenon can occur with three photons, forming an even stronger bond than the interactions between two photons.

This has almost the same flavor as the "attraction" between two electrons in a superconductor to form the bound Cooper pairs, which requires a background of lattice ion vibration or virtual phonons to mediate the coupling.

So photons can talk to one another, and in this case, 3 of them can hang out together. They just need a matchmaker as an intermediary, since they are just way too shy to do it on their own.

And with that sugary concoction, I think I need more coffee this morning.


[1] Q-Y Liang et al., Science v.359, p.783 (2018).

Wednesday, February 14, 2018

Light From A Single Strontium Atom

The image of light from a single strontium atom in an atom trap has won the Engineering and Physical Sciences Research Council photography competition.

You can see a more detailed photo of it on Science Alert.

Unfortunately, there is a bit of misconception going on here. You are not actually seeing the single strontium atom, because it highly depends on what you mean by "seeing". The laser excites the single strontium atom, and then the strontium atom relaxes and releases energy in the form of light. This is the light that you are seeing, and it is probably a result of one or more atomic transition in the atom, but certainly not all of it.

So you're seeing light due to the atomic transition of the atom. You are not actually seeing the atom itself, as proclaimed by some website. This is the nasty obstacle that the general public has to wade through when reading something like this. We need to make it very clear when we report this to the media on what it really is in no uncertain terms, because they WILL try to sensationalize it as much as they can.


Tuesday, February 13, 2018

What's So Important About The g-2 Experiment?

If it is covered in CNN, then it has to be a big-enough news. :)

I mentioned earlier that the g-2 experiment at Fermilab was about to start (it has started now), which is basically a continuation and refinement of what was done several years ago at Brookhaven. In case the importance of this experiment escapes you, Don Lincoln of Fermilab has written a piece on the CNN website on this experiment and why it is being done.

If you are not in science, you need to keep in mind this important theme: scientists, and definitely physicists, like it A LOT when we see hints at something that somehow does not fit with our current understanding. We like it when we see discrepancies of our results with the things that we already know.

This may sound odd to many people, but it is true! This is because this is why many of us get into this field in the first place: to explore new and uncharted territories! Results that do not fit with our current understanding give hints at new physics, something beyond what we already know. This is exploration in the truest sense.

This is why there were people who actually were disappointed that we saw the Higgs, and within the energy range that the Standard Model predicted. It is why many, especially theorists working on Supersymmetry, are disappointed that the results out of the LHC so far are within what the Standard Model has predicted.


Shedding Light On Radiation Reaction

This is basically an inverse Compton scattering. The latest experiment that studies this has been getting a bit of a press, because of the sensationalistic claims of light "stopping" electrons in their tracks.

A review of the experiment, and the theory behind this, is sufficiently covered in APS Physics, and you do get free access to the actually paper itself in PRX. But after all the brouhaha, this is the conclusion we get:

The differing conclusions in these papers serve as a call to improve the quantum theory for radiation reaction. But it must be emphasized that the new data are too statistically weak to claim evidence of quantum radiation reaction, let alone to decide that one existing model is better than the others. Progress on both fronts will come from collecting more collision events and attaining a more stable electron bunch from laser-wakefield acceleration. Additional information could come from pursuing complementary experimental approaches to observing radiation reaction (for example, Ref. [7]), which may be possible with the next generation of high-intensity laser systems [8]. In the meantime, experiments like those from the Mangles and Zepf teams are ushering in a new era in which the interaction between matter and ultraintense laser light is being used to investigate fundamental phenomena, some of which have never before been studied in the lab.

I know that they need very high-energy electron beam, but the laser wakefield technique that they used seem to be providing a larger spread in energy than what they can resolve:

Both experiments obtained only a small number of such successful events, mainly because it was difficult to achieve a good spatiotemporal overlap between the laser pulse and the electron bunch, each of which has a duration of only a few tens of femtoseconds and is just a few micrometers in width. A further complication was that the average energy of the laser-wakefield-accelerated electrons fluctuated by an amount comparable to the energy loss from radiation reaction.

I suppose this is the first step in trying to sort this out, and I have no doubt that there will be an improvement in such an experiment soon.


Tuesday, February 06, 2018

Therapeutic Particles

No, this is not some mumbo-jumbo New Age stuff.

While this technique has become more common, and there are already several places here in the US that are researching this, this is a nice article to introduce to you the current state-of-the-art in using charged particles in medicine, especially in treating and attacking cancer. It appears that the use of carbon ions is definitely catching up in popularity over the current use of protons.

When you read this article, pay attention to the fact that this is an outcome of our understanding of particle accelerators, that this is a particle accelerator applications, and that high-energy physics experimental facilities are often the ones that either initiated the project, or are hosting it. So next time someone asks you the practical applications of particle accelerators or particle physics, point to this.


Friday, February 02, 2018

MInutePhysics Special Relativity Chapter 1

Here is Chapter 1 of MinutePhysics attempt at a series to teach Special Relativity to those of you who are not physicists. You might want to subscribe to it if this is of any interest to you.

Note sure if one needs to build that contraption that is shown at the end of the video, though. :)


Wednesday, January 31, 2018

Are Religious People Less Smart Than Atheists?

OK, if that isn't an incendiary title, I don't know what is! :)

I took that title loosely from this article that reviews a new study on how various groups of people think. To be fair, the paper being cited actually debunks that myth that religious people are less intelligent than non-religious people.

However (you know that was coming, didn't you?), it points out that religious people tend to rely heavily on intuition when there is an apparent conflict between intuition and logic. In other words, the more religious a person is, the more likely he/she will abandon rational thinking and rely on his/her intuition.

This is actually consistent with an earlier study that I mention on here. In that study, it was discovered that non-scientists are more likely to ignore scientific facts and evidence in favor of a view that support their values. Flat-Earth believers, anyone?

The problem in all of this is that (i) logic and rational thinking are the best methodology that we know of to come up with a valid conclusion, (ii) facts and evidence are being ignored or dismissed, and (iii) our intuition has been known to be terribly wrong and unreliable.

In science, intuition can only go so far, and we often abandon our intuition once it has been trumped by facts and evidence. This is why science evolves and improves over time. So when someone goes against that, and lean more on faulty intuition than logic and rational thinking, we then are into no-rules and no-holes-barred territory. Is this why a lot of people still believe in irrational and uncorroborated ideas and opinions?

I don't know. To me, dealing with public opinions and why such-and-such group of people or individual thinks that way is more mysterious than any of the physics research that I've done. Human beings are irrational creatures by nature, I suppose.


Sunday, January 28, 2018

Weightlessness and Gravity in Space

Rhett Allain tackles the issue of gravity in space and weightlessness as he dissects the scene he saw from The 100.

This is a common problem that many of us who teach intro physics encounter. Students, and the general public, often have a severe misunderstanding of the concept of "weightlessness", and equate that to having zero gravity. Certainly the example of being in a free-falling elevator, or even the example of the zero-g simulation in airplanes (the "vomit comet") are clear examples where one can be weightless but still in an environment with g not being zero.

It is one of those topics where, as physics instructors, we are resigned to a life-sentence of educating people non-stop about this misconception.


Friday, January 26, 2018

Muon g-2 Experiment To Start Run

Everything old is new again!

The old muon g-2 experiment that was at Brookhaven was taken apart, and rebuilt at Fermilab. Now, after the logistic challenge of moving the huge magnet from there, and after the long hard work of rebuilding the facility, the muon g-2 is now about ready to start its run.

The facility is now better than ever, and physicists are hoping that there will be an anomaly in the measurement, indicating new physics beyond the Standard Model.

In 2013, the g-2 team lugged the experiment on a 5000-kilometer odyssey from Brookhaven to Fermilab, taking the ring by barge around the U.S. eastern seaboard and up the Mississippi River. Since then, they have made the magnetic field three times more uniform, and at Fermilab, they can generate far purer muon beams. "It's really a whole new experiment," says Lee Roberts, a g-2 physicist at Boston University. "Everything is better."

Over 3 years, the team aims to collect 21 times more data than during its time at Brookhaven, Roberts says. By next year, Hertzog says, the team hopes to have enough data for a first result, which could push the discrepancy above 5 σ.

Good luck, everyone!


Thursday, January 25, 2018

Flat-Earth Believers Are IDIOTS!

This would be funny if it wasn't so sad, and scary because these people presumably vote!

I read about this Flat Earth International Conference (honest!), and I can't believe the idiotic stuff that was written in the article. I'm going to ignore the paranoid claims about conspiracy and stuff. I'm not here to deal with their psychotic problems. However, I can deal with the science, and in particular, when idiots try to use physics to justify their stupidity.

Many flat-Earthers believe in testing the theory.

Darryle Marble said he conducted his own in-flight experiment using a leveler to test if the plane was flying parallel to a flat Earth.

"If it were a sphere then the surface of the Earth still would have been curving underneath the airplane while it's flying level," he reasoned. "It’s so simple it'll go right over your head," he said adding that people who have flown planes allegedly told him they "haven’t seen any curvature."

First of all, they don't believe astronauts who have gone into space when they said that the earth is a sphere, but yet, they want to use human observation from airplane rides! This is an example of pick-and-choose. 

Secondly, a leveler? Seriously?

Assuming that the plane is moving at a constant speed and at a constant altitude, this means that the plane is moving parallel to the earth's surface all the time. That's the definition of constant altitude. If the plane were to fly "straight with respect to the spatial coordinates", then it would be increasing in altitude! If that were to happen, the leveler will indicate several things (i) the acceleration due to the plan having to increase its altitude and (ii) gravity will act not straight down anymore. Any of these will affect the leveler.

But really, does the fact that if one head east continuously and end up at the same position later while in the plane, means nothing to these people?

There are many evidence that the earth is a sphere, and many of these are  plain obvious. The fact that different parts of the earth having opposite seasons at a given time of the year is one clear example. A flat earth will not result in different parts of the earth having different daylight hours and different seasons.

But there is another clear test here that have been too obvious: using a Faucault pendulum. How would these idiots explain not only the change in the plane of oscillation of the Faucault pendulum over a period of 24 hrs, but also the fact that (i) the change in the plane of oscillation is in the OPPOSITE direction for those having the opposite season (i.e. northern hemisphere versus southern hemisphere) and (ii) there is no change in the plane of oscillation at the equator.

Of course, to understand the significance of this observation, one actually must know the physics involved in a Faucault pendulum, and the conservation of angular momentum. But hey, maybe physics and all these conservation laws are also more conspiracies.

Again, to paraphrase Kathy Griffin: "These people are proud of their aggressive ignorance."


What Is Relativity All About?

OK, so it may be odd that I want to highlight a beginner's topic on a popular subject on a blog that has been around for years. But hey, I get new people following this thing all the time, and I often get the same questions on basic physics.

So here's a simple, basic intro video on Special Relativity. In fact, Don Lincoln will be producing a series of such videos on this topic for those of you who want to know about Special Relativity, but was too afraid to ask.


Wednesday, January 24, 2018

Enrico Fermi - The Pope of Physics

A fascinating presentation on Enrico Fermi.


Tuesday, January 23, 2018

Putting Science Back Into Popular Culture

Clifford Johnson of USC has an interesting article on ways to introduce science (or physics in particular), back into things that the public usually gravitate to. In particular, he asks the question on how we can put legitimate science into popular culture so that the public will get to see it more regularly.

Science, though, gets portrayed as opposite to art, intuition and mystery, as though knowing in detail how that flower works somehow undermines its beauty. As a practicing physicist, I disagree. Science can enhance our appreciation of the world around us. It should be part of our general culture, accessible to all. Those “special talents” required in order to engage with and even contribute to science are present in all of us.

So how do we bring about a change? I think using the tools of the general culture to integrate science with everything else in our lives can be a big part of the solution.

Read the rest of the article on how to inject science into popular entertainment, etc.


Sunday, January 14, 2018

Table-Top Elementary Particle Experiment

I love reading articles like this one, where it shows that one can do quite useful research in elementary particles using experimental setup that is significantly smaller (and cheaper) than large particle colliders.

Now, he’s suddenly moving from the fringes of physics to the limelight. Northwestern University in Evanston, Illinois, is about to open a first-of-its-kind research institute dedicated to just his sort of small-scale particle physics, and Gabrielse will be its founding director.

The move signals a shift in the search for new physics. Researchers have dreamed of finding subatomic particles that could help them to solve some of the thorniest remaining problems in physics. But six years’ worth of LHC data have failed to produce a definitive detection of anything unexpected.

More physicists are moving in Gabrielse’s direction, with modest set-ups that can fit in standard university laboratories. Instead of brute-force methods such as smashing particles, these low-energy experimentalists use precision techniques to look for extraordinarily subtle deviations in some of nature’s most fundamental parameters. The slightest discrepancy could point the way to the field’s future. 

Again, I salute very much this type of endeavor, but I dislike the tone of the title of the article, and I'll tell you why.

In science, and especially physics, there is seldom something that has been verified, found, or discovered using just ONE experimental technique or detection method. For example, in the discovery of the Top quark, both CDF and D0 detectors at Fermilab had to agree. In the discovery of the Higgs, both ATLAS and CMS had to agree. In trying to show that something is a superconductor, you not only measure the resistivity, but also magnetic susceptibility.

In other words, you require many different types of verification, and the more the better or the more convincing it becomes.

While these table-top experiments are very ingenious, they will NOT replace the big colliders. No one in their right mind will tell CERN to "step aside", other than the author of this article. There are discoveries or parameters of elementary particles that these table-top experiments can study more efficiently than the LHC, but there are also plenty of the parameter phase space that the LHC can probe that can't be easily reached by these table-top experiments. They all are complimenting each other!

People who don't know any better, or don't know the intricacies of how experiments are done or how knowledge is gathered, will get the impression that because of these table-top experiments, facilities like the LHC will no longer be needed. I hate to think that this is the "take-home" message that many people will get.


Thursday, January 11, 2018

How Do We Know Blackholes Exist?

If you don't care to read in detail on the physics, and have the attention span of a 2-year old, this is Minute Physics's attempt at convincing you that blackholes exist.


Friday, January 05, 2018

Why Did Matter Matter?

Ethan Siegel has yet another nice article. This time, he tackles on why we have an abundant of matter in our universe, but hardly any antimatter, when all our physics seems to indicate that there should be equal amount of both, or simply a universe filled with no matter.

I have highlighted a number of CP-violation experiments on here, which is something mentioned in the article. But it is nice to have a layman-type summary of the baryo-lepton-genesis ideas that are floating out there.


Thursday, January 04, 2018

Determining The Hubble Constant

Ethan Siegel has a nice article on the pitfalls in determining one of the most important constants in our universe, the Hubble constant. The article describes why this constant is so important, and all the ramifications that come from it.

As you read this, notice all the "background knowledge" that one must have to be able to know how well certain things are known, and what are the assumptions and uncertainties in each of the methods and values that we use. All of these need to be known, and people using them must be aware of them.

Compare that to the decision we make everyday on things we accept in social policies and politics.


Monday, January 01, 2018

Gravitational and Inertial Mass

In this video, Don Lincoln tackles the concept of gravitational and inertial mass, and talks about the wider, more general implication of them being the same within Einstein's General Relativity.